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Abstract

A new method is presented for e�cient statistical analysis of linear electronic circuits, when small and large pa-

rameter tolerances are given. The statistically generated value of the parameter is considered as a faulted value, as it

deviates from the nominal thus enabling the application of a simulation method which uses a new approach of con-

current fault simulation. This method adds new elements to the circuit, representing individual parameter increments,

while keeping the topology of the original one. The equations for the original and several perturbed circuits are for-

mulated and solved simultaneously. In this way, redundant computations are avoided in both the equation formulation

and equation solving phases, which shorten the simulation time. A statistical frequency and time domain tolerance

simulator of linear circuits was developed on the basis of this method with e�ective user-friendly interface. The method

is especially suited for yield sensitivity to some selected circuit parameters estimation. Here simulation results of several

benchmark circuits are presented. E�ciency analysis is also included. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Realistic system and circuit design must account for the fact that exact realizations of hand calculations are seldom

achieved. The reason for this includes the physical and economic constraints in the manufacture, but the consideration

should be also focused on aging or varied ®eld environments in which the system must operate. The e�ects of variations

in design parameters, which are usually modeled as random variables, can be investigated via statistical circuit analysis

[1]. The conventional approach to statistical analysis is the Monte Carlo method, in which, for a set of speci®ed

probability density functions of design parameters, an empirical distribution for various outputs or performance

measures is found. As a secondary result, the parametric yield may be extracted from the results obtained. In this way,

the designer can obtain results characterizing the output of the manufacturing process and can predict the system

performance in di�erent conditions. Tolerance analysis using Monte Carlo method is well established [2], and prom-

inent simulators such as SPICE [3] exploit this method for acquiring statistical data of a circuit.

A speci®c application of the statistical analysis may be found in the iterative tolerance design methods such as design

centering [4], worst case analysis [5], or similar. In these methods, the statistical analysis is repeatedly performed in every

iteration in order to estimate the performance of the updated circuit. When design centering is of concern, fast new

search algorithms are available [6], aimed to reduce the design time.

The Monte Carlo method is algorithmically straightforward [7]. The tolerance simulator repetitively generates sets of

component values, simulates the circuit, and displays the obtained results. This simple method of repetitive simulations

is prescribed in many simulators for its ease of implementation. To estimate its computational complexity, however, the

following is to be considered. Let us denote the m-vector of nominal values of the circuit parameters as p0 which will be
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a subject of statistical variations. In every step of the Monte Carlo analysis, a new vector is generated, designated as pi,

i � 1; 2; . . . ; k; k being the number of Monte Carlo simulations. It will be convenient for further use, to express this new

value as pi � p0 � Dpi. In such a Monte Carlo analysis, the circuit should be analyzed k � 1 times. If the frequency or

time domain analysis is performed in n distinct time or frequency points, the overall number of analyses will be n�k � 1�.
This may become a serious computational task even for linear circuits and even if no optimization is considered.

Here, we want to consider a special case of statistical analysis when the in¯uence of only one or a small number of

parameters to the circuit response or to the yield is investigated. This kind of analysis may be performed in order to

highlight the large change sensitivity of the response to a parameter for which small-change adjoint-network based

sensitivity analysis [8] (because of the magnitude of the parameter tolerances or for other reason) is not satisfactory.

Generally speaking, the new circuit arising in every Monte Carlo analysis step, may be considered as a perturbation of

the nominal one, the parameter deviation being Dpi. These deviations may be, however, considered as parametric faults

of the circuit with m parameters. So, the circuit analysis within one Monte Carlo step may be considered as a fault

analysis and fault analysis method may be applied for this reason. This, of course, stands for the case when only one

parameter is also toleranced or faulted.

There were many attempts to reduce the computational complexity of the Monte Carlo method, for example see

Ref. [9]. We ®nd that one of the ways in this direction should be to reduce the time needed for evaluation of the circuit

response [10]. In this sense, we would prefer a method performing equation formulation and solving simultaneously (or

concurrently) by avoiding repetitive computation which were supposed to be done when the original circuit was analyzed.

We shall group the existing methods attempting to apply such concepts into three groups. First, the di�erence form

of TellegenÕs theorem [11] was applied for large change sensitivity analysis [12]. This, in fact, stands for tolerance

analysis in the frequency domain. The method is based on an analysis of the adjoint network (equally complex as the

analysis of the original one) followed by a solution of a newly constituted system of linear equations of order m. The

new system being relatively small and sparse at the same time gives to the method, high e�ciency. The only disad-

vantage of this method is lack of applicability in the time domain. As to our knowledge, no re®nements of this method

were published up to date. As the second method, we will mention a set of attempts based on HouseholderÕs formula

[13] which was analyzed in Ref. [1]. Application of this method again leads to a solution of the original circuit equations

and, again, produces an mth order new system of equations. The computational overheads of this procedure, as shown

in Ref. [1], are proportional to m3 which is not e�cient enough for linear circuits tolerance analysis, whereas suc-

cessfully applied to nonlinear concurrent fault simulation [14,15]. The third approach [16] is based on the modi®ed

nodal concept of equation formulation [17] and formally is reminiscent of Ref. [18]. It is equally applicable to time and

frequency domain analysis. The following advantages of this approach will be shown in this article: exceptional e�-

ciency in the equation formulation phase of the analysis, low overheads in the equation solution phase, multiple output

observation, and catastrophic faults (i.e. �100%) modeling.

Based on this, this article proposes a new method for statistical simulation of linear analog circuits using a con-

current fault simulation. The method performs Monte Carlo analysis in order to achieve appropriate statistical

properties of a circuit response. The basic idea is to keep the original structure of a circuit when statistical simulation is

performed. Toleranced elements are modeled by added branches in the way that original system of equations is pre-

served, thus giving an opportunity to use decomposed matrix of the original system. Speci®c advantages o�ered by the

structure of the faulted circuit system of equations is exploited in order to raise the speed of the computations. Ac-

cording to this idea, a new statistical linear electronic circuit analyzer is developed and implemented. Special e�orts were

paid to ensure user friendliness. Application of this tool to the analysis of speci®c high selectivity ®lters shows its ef-

fectiveness and usefulness.

The article is organized as follows: Section 2 describes the method of concurrent fault simulation. The method is ®rst

described for one toleranced element, and then extended to a general procedure for introducing perturbations into other

lumped network elements in the frequency and time domain. Section 3 is focused on application of this method to

statistical circuit simulation. After that, some aspects of the method implementation are given, as well as the simulation

results obtained by concurrent statistical electronic linear analog simulation (CONSTELLATION), a simulator de-

veloped according to the methods described in this article.

2. Concurrent fault simulation in linear electronic circuits

The method of concurrent fault simulation is based on the modi®ed nodal analysis (MNA) [17] approach. This

method [16] enables parametric fault analysis, but also makes possible the catastrophic fault simulation. The main

advantages of the concurrent fault simulation are in time savings when each defect is considered. These time savings

relate to the steps of equationsÕ formulation and system decomposition.
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This section describes the basics of the concurrent fault simulation, and further extends the discussion to speci®c

elements in frequency and time domain.

2.1. Basics of the method

Let us examine a conductance G in a circuit N, consisting of n variables (node voltages and branch currents).

Consider that G is perturbed in the way that its change is DG � g. The representations of the original and perturbed

circuit are given in Fig. 1, where a port is created parallel to G. In this way, a new equation representing the new branch

current is added to the original system of equations. The equations representing this branch in the original and per-

turbed circuit are

iA � 0; �1a�

gv̂A ÿ îA � gv̂k ÿ gv̂l ÿ îA � 0; �1b�

where ^ denotes a ``perturbed'' circuit variable, and vk and vl stand for the kth and lth node voltages, respectively.

These equations are used in the MNA circuit equationsÕ formulation. If the MNA is applied to the original circuit of

Fig. 1(a), we obtain

Y A

B ÿ 1

� �
v

iA

� �
� j

0

� �
; �2�

where Y is the MNA matrix of the circuit N, A, the column vector with all the elements equal to zero except for the kth

and lth, which are 1 and )1, respectively, B, the row vector containing all zeros, v, the vector of unknown circuit

variables, and j, the vector excitation. Given that iA � 0, it does not matter which conductance is perturbed and v (in the

original circuit) remains unchanged. The same observation will be valid if more than one port is created simultaneously.

The perturbed circuit shown in Fig. 1(b) can be represented by the following system of equations:

Y A

D ÿ 1

� �
v̂

îA

� �
� j

0

� �
; �3�

where D � gAT . In order to ®nd the voltage and current increments for the changed value of conductance, the following

convention is used:

v̂

îA

� �
� v

iA

� �
� Dv

DiA

� �
: �4�

The next system of equations is obtained when Eq. (4) is substituted into Eq. (3) and the known values transferred to

the right-hand side

Y A

D ÿ 1

� �
Dv

D iA

� �
� j

0

� �
ÿ Y A

D ÿ 1

� �
v

iA

� �
� j

0

� �
ÿ Y A

B ÿ 1

� �
v

iA

� �
ÿ 0 0

D 0

� �
v

iA

� �
� 0

ÿg vk ÿ vl� �
� �

:

�5�

This system de®nes the relations between the voltage and current increments in the modi®ed circuit as a function of

excitation de®ned by the original circuit response.

Looking at Eq. (5), we see that solving this system means computing all node voltage (current) increments, which is

not the case when the adjoint network method [8] is applied. Further, the method of concurrent fault simulation does

Fig. 1. (a) The original and (b) perturbed circuit.
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not impose any limitations on the types and number of excitations in N, in contrast to the adjoint network method

where only one excitation is allowed.

The bene®t derived by use of the concurrent fault simulation method is easily seen as only one decomposition of Y

matrix is necessary. Once decomposed, Y matrix can be further used in the process of solving the perturbed circuits.

Since D and A are vectors, the time necessary for factorization of D and A is small compared to the time consumed by

factorization of Y matrix. Also, we will see that, in some cases, sparsity of the right-hand side vector in Eq. (5) can be

exploited for speeding up a forward substitution [19].

If the number of elements with given tolerance is m, the structure of the obtained system matrix is shown in Fig. 2.

The circuit behavior can be observed in two ways: when faults are inserted one at a time, or by including all elementÕs
tolerances at the same time. The di�erence lies in the dimension of the analyzed system. In the ®rst case, only one

additional row and column for each fault will be substituted when that fault is inspected. Such a fault analysis requires

one factorization and m+1 forward and back substitutions. In the second case, all additional rows and columns from

the Fig. 2 will be added at the same time, increasing the size of the system to n� m.

The price paid, in the second case, is the additional time needed for forward and back substitutions as the system is

expanded. Also, time is consumed by factorization of added parts of the system matrix. Therefore, the e�ectiveness of

the new approach is apparent when the number of toleranced elements observed at a time is smaller than the system

matrix dimension. It will perform much faster than the repetitive circuit analysis when the mapping of one or a few

parameter tolerances onto the circuit response is of main interest.

2.2. Concurrent fault simulation in frequency domain

If we extend the previous discussion to the frequency domain, Y, v, j, A, B and D in Eqs. (2) and (4) become complex:

Y � Yr � jYi, v � vr � jvi, j � jr � jji, A � Ar � jAi � Ar � j0, B � Br � jBi � 0� j0, and D � Dr � jDi. Substituting

this in Eq. (2) gives

Yr ÿ Yi Ar ÿ Ai

Yi Yr Ai Ar

Br ÿ Bi ÿ 1 0
Bi Br 0 ÿ 1

2664
3775

vr

vi

iA r

iA i

2664
3775 �

jr

ji

0
0

2664
3775; �6�

which is describing the original circuit in frequency domain. Substitution in Eq. (5) gives

Yr ÿ Yi Ar ÿ Ai

Yi Yr Ai Ar

Dr ÿDi ÿ 1 0
Di Dr 0 ÿ 1

2664
3775

Dvr

Dvi

DiA r

DiA i

2664
3775 �

0

0

ÿg vkr ÿ vlr� �
ÿg vki ÿ vli� �

2664
3775 �7�

representing extraction from the perturbed circuitÕs system of equations. The di�erence, when frequency domain

analysis is considered, is in the dimension of the system which is twice greater than in the DC domain.

Fig. 2. Structure of the system matrix, where the newly added rows±columns represent particular faults.
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Next, fault modeling of some other elements encountered in the frequency domain analysis will be introduced, the

capacitance being the ®rst. The perturbed system of equations is formed in the same way as it was for the conductance,

by adding a new incremental capacitor branch, shown in Fig. 3. Thus, we have

Yr ÿ Yi Ar 0
Yi Yr 0 Ar

0 ÿDi ÿ 1 0
Di 0 0 ÿ 1

2664
3775

Dvr

Dvi

DiA r

DiA i

2664
3775 �

0
0

��xDC� vki ÿ vl i� �
ÿ�xDC� vkr ÿ vlr� �

2664
3775; �8�

where Di � 0 � � � xDC � � � ÿ xDC � � � 0� �, with non-zero elements in kth and lth positions.

When inductance is considered, things are not so simple, for it belongs to the group of elements described by voltage

equations. A perturbation in one of these elementÕs values implies addition of an incremental series element, as opposed

to the idea described above, and introduces a new node in the circuit. This can be avoided by the introduction of a

gyrator as shown in Fig. 4(a) represents the inductance in the original circuit Fig. 4(b) represents the equivalent

(original) circuit using a gyrator and a capacitance, where C is an equivalent to the inductance. The MNA formulation

for the transformed original circuit gives

ia � vk� ÿ vl�= jxL� �; �9�

where vk and vl are the node voltages at terminals of the inductor, while ia is the inductor branch current. The con-

tribution of the gyrator, i.e. the new equation, belongs to the original circuit which is described by the system matrix Y.

Fig. 3. Incremental capacity branch.

Fig. 4. Tolerancing an inductor: (a) inductance, (b) inductance modeled by gyrator, (c) representation of incremented inductance in

modi®ed circuit.
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In order to introduce perturbation, DL, a new port is created in parallel to the equivalent capacitor, as shown in Fig.

4(c). In this way, the series connection discussed above is avoided. The equation representing the perturbed circuit is

jxDC v̂x ÿ îA � 0; �10�
which is structurally identical to that used to represent conductance. From Eq. (10), considering that v̂x � îa, DC � DL,

and îA � v̂A, where v̂A is the voltage increment on DL in the equivalent circuit, we can write

jxDL îa ÿ v̂A � 0: �11�
For the perturbed circuit system of equations, when an incremental inductance change in the frequency domain is

applied, will have the next structure

Yr ÿ Yi Ar 0

Yi Yr 0 Ar

0 ÿDi ÿ 1 0
Di 0 0 ÿ 1

2664
3775

Dvr

Dvi

DiA r

DiA i

2664
3775 �

0

0

�xDLia i

ÿxDLia r

2664
3775; �12�

where Di � 0 � � � xDL � � � ÿ xDL � � � 0� �, with non-zero elements in kth and lth positions.

2.3. Concurrent fault simulation in time domain

For the time domain analysis, dynamic elements are of interest, in particular, inductors and capacitors. If a gyrator

is used to formulate the equations for an inductive branch, we only need to consider the case of a capacitive branch.

Time domain analysis presumes that the values of voltages and currents in a circuit are dependent on previous time

instances. Considering the backward Euler integration rule, a capacitive branch in the time domain is described as

iC � C
dvC

dt
; �13�

which is discretized as

in�1
C � Gn

Cvn�1
C � in

Cs; �14�
where the superscripts n and n+1 denote the previous and present time points, respectively, Gn

C � C=hn, in
Cs � ÿCvn

C=hn,

and hn is the time step: hn � tn�1 ÿ tn. Eq. (14) expresses the fact that the capacitive branch in the time domain in-

troduces conductance into the Y matrix and current source into the right-hand side vector. The system of equations

equivalent to Eq. (2) is now

Yn A

B ÿ 1

� �
vn�1

iA

� �
� jn�1 ÿ jn

Cs

0

� �
; �15�

where jk
Cs

ÿ �
k , the kth element of vector jn

Cs, is equal to the sum of all in
Cs leaving the kth node in N. jn�1 is the value of the

vector of excitations j at t � tn�1.

If the same time step, hn, is used for both the original and the perturbed circuit, the introduction of a perturbation

will give the same Yn, but di�erent jn
Cs. For the perturbed network, the following system of equations is valid:

Yn A

Dn ÿ 1

� �
v̂n�1

în�1
A

" #
� jn�1 ÿ ĵn

Cs

ÿîn
DCs

" #
; �16�

where Dn � Gn
DCAT , Gn

DC � DC� �=hn, and în
DCs � ÿGn

DC v̂n
k ÿ v̂n

l

ÿ �
is the current source dependent on the capacitance

voltage from the previous time point.

If we introduce v̂n�1 � vn�1 � Dvn�1, and în�1
A � in�1

A � Din�1
A � 0� Din�1

A , the following system of equations in time

domain is obtained:

Yn A
Dn ÿ 1

� �
Dv̂n�1

DîA

" #
� jn

Cs ÿ ĵn
Cs

ÿîn
DCs ÿ Gn

DC vn�1
k ÿ vn�1

l

ÿ �" #
: �17�

The choice of the discretization step when applying this method is a particularly important task. In order for the

simulation to be correct, it is essential that the time step is of the same order of magnitude as the smallest time constant

active in the circuit. On the contrary, simulation time is usually much greater than the smallest time constant. That is, in
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a general case, the reason for use of a variable time step determined by the local truncation error in every time instant

[20]. This would be done in a Monte Carlo simulator applying a repetitive circuit analysis. When concurrent fault

simulation is performed, however, in order that Eq. (17) is to be applicable, all the circuits i.e. original and all the

perturbed replicas, must be simulated with the same time advancing scheme. This means that in every time step, the

slowest simulation (replica) will dictate the time advancement. Nevertheless, we are speaking about linear circuits whose

equations are not as sti� as for the nonlinear ones and the issue of time step estimation is not as crucial. In addition, we

suppose that a fault in¯uences only a small number of time constants within the circuit so that the di�erence between

the original and the perturbed circuit, from the time step point of view, is not large. This is why the CONSTELLA-

TION simulator uses a ®xed time step for time domain analysis, whereas an algorithm for e�ective time step evaluation

in every instant is under development.

2.4. Modeling various linear elements

In Section 2.3, we have seen how dynamic elements are modeled. Here, we will discuss some other linear elements

such as controlled sources. The goal is to develop ``stamps'' for elements, enabling the automation of an MNA for-

mulation.

We will consider modeling of a voltage controlled voltage source (VCVS). It is one of the elements described by the

voltage equation, as described above. In order to model this component in a perturbed circuit without loss of the

circuitÕs structure, a gyrator should be employed. Fig. 5(b) presents the idea, where an increment current source branch

is added to the circuit on the right side of the gyrator that converts current to voltage and vice versa. l is an equivalent

transconductance in Fig. 5(b). The MNA formulation is

vk ÿ vl � lV � l va� ÿ vb�; �18�
where vk and vl are the node voltages at the terminals of the VCVS, while V � va ÿ vb is the controlling voltage. The

procedure of the perturbance introduction is similar as for the inductance. Equation appended in the perturbed circuit is

Dl v̂k

�
ÿ v̂l

�
ÿ îA � 0: �19�

In the same manner, models of other linear elements were elaborated, and their contribution implemented in the

simulator CONSTELLATION.

3. Statistical simulator development

The method of concurrent fault simulation can be applied in a statistical circuit simulator. This means that repetitive

simulations of toleranced circuits must be performed. In order to provide a valuable demonstrate strength of the new

method power, a new simulator, CONSTELLATION, has been developed [21]. It performs frequency and time domain

analysis, and is applicable only to linear circuits. It uses Monte Carlo method to achieve multiple circuit simulation

results. The element can be given various kinds of distributions, such as uniform, Gaussian, and others including

piecewise linear descriptions. One can specify the number of simulations that are going to be taken per each frequency/

time point, as well as the way of analyzing variances of the elements separately, or at the same time.

It employs modern algorithms for manipulating sparse matrices and of solving system equations [22]. Although its

purpose was to implement the method of concurrent fault simulation into statistical simulator, there has been an

opportunity left to statistically simulate circuits using classical method of repetitive simulations (option checking

Fig. 5. Tolerancing a voltage controlled voltage source: (a) VCVS symbol, (b) representation with inserted perturbation.
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included), so the simulation times taken by each method could be compared. Keeping in mind that faults can be ob-

served individually, one by one, or all at the same time, there has been an option left (individual) of determining the

method of fault analysis.

The topology of a circuit is described in a SPICE-like manner, and is retrieved by the simulator from an input ®le.

The statistical-distribution parameter values of elements in a circuit are given in percents. Simulation parameters can be

changed through the input mask (windows application). An appropriate graphical postprocessor is incorporated in the

simulator for the purpose of observing simulation results. It enables graphical representations of output data, from the

raw output characteristics to the graphics of the elaborated statistical properties.

The programming environment chosen for this purpose is Borland C++C++ Builder [23], a fast rapid application de-

velopment (RAD) tool. It enables fast design of the simulator interface, taking care of the project speed, with great

possibilities even on system level, thus giving an opportunity of high optimization.

Class organization of the simulator is given in Fig. 6. Root class is smatrix, dealing with sparse matrices. Its

ancestor, class sparsolv carries out solving a system of equations. The central class Analysis is the base class for all

types of analysis (DC, AC, Tran). It contains declarations of the functions used for matrix ®ll-in, factorization, and

solving system of equations. Some of these functions, such as the one that solves system of equations have the same

implementation in all analysis domains, and those are de®ned in this class. Others, such as the function for matrix ®ll-in,

have various implementations, depending on the type of analysis. Those are virtually declared in the Analysis class.

A part of the Analysis class declaration is presented in the following code:

class Analysis: public sparsolv, public tolerances {

protected:

sparsolv Y; // original circuit system of equation entity

elements* el;// circuit topology pointer

int toli; // index of currently probed tolerance

. . .

public:

Analysis (elements& elem, int is_it_AC);

~Analysis();

// methods for resolving the original circuit system of eqns.

virtual void FillYMatrix(elements& el, sparsolv& Y); // ®ll-ins

void PrepareYMatrix(sparsolv& Y); // prepare matr. for solving

void SolveYMatrix(sparsolv& Y); // solving system of equations

// methods for resolving the perturbed circuit system of eqns.

virtual void FillEntireMatrix(elements& el, int sim_number);

void PrepareEntireMatrix();

void SolveEntireMatrix(int sim_number);

. . .

virtual void DoAnalysis() { };

};

Fig. 6. Class hierarchy in CONSTELLATION.
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Successor classes of the Analysis class are DCAnalysis, ACAnalysis, and TranAnalysis. These classes inherit

some common functions from Analysis class, and introduce a de®nition of analysis speci®c functions declared in

class Analysis, as it is shown in the next part of the class ACAnalysis declaration

class ACAnalysis: public Analysis {

double frequency; // current frequency of analysis

void EvaluateNewFrequency(int currpoint); // calc. of new freq.

. . .

public:

ACAnalysis (elements&);

// ®ll-in original circuit system of equations

void FillYMatrix(elements&, sparsolv&);

// ®ll-in perturbed circuit system of equations

void FillEntireMatrix(elements& el, int sim_number);

. . .

void DoAnalysis();

};

Finally, tolerances class performs an automated random-number generation, used throughout the repetitive sim-

ulations. It should be stated here that these random numbers are determined at the ®rst frequency/time point and stored

in memory. During later simulations, these values are recalled in order to achieve correct results.

The global algorithm for the frequency domain simulation is shown in Fig. 7. Three main loops can be sighted:

frequency loop, individual tolerance loop, and repetitive simulations loop. The second loop would not exist if all the

given faults were analyzed at the same time. Matrix ®ll-in and factorization for the original circuit are performed once

for each frequency point, whereas the rest of the perturbed matrix is ®lled later, inside the inner loop. At the end of one

loop pass, the result of the perturbed circuit has to be added to the ones obtained for the original circuit, in order to

obtain voltages and currents, and not their increments. Time domain algorithm would be similar, but with two main

di�erences: the zero time DC analysis must be performed in order to establish the boundary conditions, and previous

time point solution has to be memorized for it is used in the current time point simulation.

Some of the method application speci®cs are as follows: Repetitive solving of the system of equations to obtain

statistical characteristics includes LU factorizations. In the previous section, we stated that Y matrix needs not to be

factorized. Now we can add that for the same structure of the matrix shown in Fig. 2, i.e. when only the elements

parameters are changed, we do not need to factorize matrix A either. Also, if we divide the added row by the value of

added conductance g from Fig. 1(b), we obtain

v̂A ÿ 1=DG� �̂iA � v̂k ÿ v̂l ÿ 1=DG� �̂iA � 0; �20�

which means that matrix D contains constant values, so the only part of the entire matrix that should be decomposed is

the lower-right part of the matrix, containing only the diagonal elements. In the same way as for conductance, new

equations introduced by other linear elements can be transformed to have the same form as Eq. (20). Fig. 8(a) shows the

order of matrix decomposition for the ®rst statistical simulation of each fault at one frequency/time point. For the ®rst

simulation of the ®rst fault at that point, matrix Y should also be factorized. In Fig. 8(b), we can see that factorization

Fig. 7. Global algorithm for frequency domain analysis.
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for each statistical simulation of the same fault needs much smaller computational e�ort than the factorization of the

whole matrix. Therefore, time spent in this phase of simulation is signi®cantly reduced.

In the phase of forward and back substitutions, computational e�ort is slightly greater in the case of the new

method. It particularly depends on the number of branches added to the circuit: higher the number of elements with

tolerances that are observed at the same time, greater the di�erence in simulation times. However, if we observe faults in

a circuit one at a time, only one factorization of Y matrix per frequency/time point is going to be necessary for all those

faults.

Another method to further reduce frequency domain simulation time is, as mentioned earlier, use of the sparsity of

the right-hand side vector for the perturbed circuit. Forward substitution is performed by the next equation

bi �
bi for i � 1

bi ÿ
Piÿ1

j�1

lijbj

 !,
lii for � 2; . . . ; system size

8><>: ; �21�

where bi is the ith element of the right-hand side vector, and lij is a member of L submatrix of the system. Considering

Eq. (7), we can reach a conclusion that the ®rst 2n elements of the right-hand side vector are equal to zero, where n is the

number of voltages and currents in the original circuit. Clearly, the ®rst 2n forward substitutions need not be per-

formed, i.e. forward substitutions start from (2n� 1)th element of the right-hand side vector. Keeping in mind that the

factorization process is already speeded-up in repetitive simulations using the method of concurrent simulations, the

additional reduction of forward substitution time is not negligible. We observed that simulation time savings up to 20%

may be reached if this property of the concurrent fault simulation method is exploited. We can bene®t from this, only

when performing frequency domain analysis, for the reason that in time domain analysis, dynamic elements generate

unpredictable ®ll-ins in the right-hand side vector. Therefore, the ®rst n elements of the right-hand side vector in the

system of equations describing the perturbed circuit do not have to be zeros.

The implementation of the concurrent fault simulation method, and the classical method of repetitive simulations in

the statistical simulator enabled a comparison of the simulation times. The results are shown in Section 4.

4. Results and discussion

Due to the fact that Monte Carlo analysis produces a huge amount of data, a designer confronted with the complete

results might have di�culty in identifying and extracting the signi®cant values. Therefore, the task of the postprocessor

is to organize these data into brief comprehensible forms. This means that a summary of test statistics should be

presented to the designer. This includes the yield percentage, average value, standard deviation, maximum and mini-

mum values.

The simulator has been tested on several circuits [24], one of them being the 10-stage bandpass crystal ®lter shown in

Fig. 9 [25]. Nominal values of the parameters are given at the bottom of the ®gure. This ®lter is designed to have 1 MHz

central frequency and 1 kHz passband. This example was chosen due to its extremely high sensitivity to circuit pa-

rameter variations. In addition, representing, in fact, a real crystal ®lter, sets of the ®lter elements may be considered as

crystalÕs model and looked upon as separately varied. This gives rise to our method which is intended to be applied for a

``small'' number of toleranced elements.

We shall consider the frequency domain analysis, and observe ®rst four inductances in the circuit (denoted as L1, L2,

L3 and L4). Let the values of these elements have Gaussian distribution with standard deviations of 0.005%. If we

observe changes of each inductance separately (option individual included), we obtain particular in¯uences on frequency

Fig. 8. Parts of the circuit matrix requiring factorization: (a) for the ®rst simulation of the fault, (b) for each next simulation of that

fault.
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characteristic. Results of the simulation shown as families of amplitude characteristics when the value of L1 is toler-

anced are shown in Fig. 10(a).

The simulation included 1000 analyses of the circuit for each of the mentioned inductances for the frequencies

between 999.00 and 1000.54 kHz using 200 frequency points. Altogether 200,000 circuit analyses were performed. For

that simulation, CONSTELLATION consumed 547.7 s if the concurrent fault simulation method was used, and

2637.4 s when the method of repetitive simulations was applied. Part of the simulation results is shown in Fig. 11(a),

where one can see that the number of frequency points used is not appropriate because the e�ects of the variations of

elements are not scanned precisely, especially by the upper bound of the passband, on frequencies near 1000.5 kHz.

Fig. 11(b) shows frequency characteristics for the frequencies in the interval from 1000.4 to 1000.5 kHz, obtained when

one uses 1000 frequency points. Therefore, 1,000,000 analyses were performed for the whole Monte Carlo simulation.

Comparing these two ®gures, one concludes that small number of samples leads to an obscure characteristic, and to

uncertainties concerning the real properties of the observed ®lter. For that reason, simulation in extended number of

frequency points is necessary, which consequently increases simulation time, taking 2740.2 s with the concurrent fault

simulation method, and 13,198.5 s using the classical method of repetitive simulations. Now, we see that the use of the

concurrent fault simulation method reduces the simulation time nearly ®ve times, and that the savings in the simulation

time are signi®cant.

If we use this method to observe the variations of elements simultaneously, the perturbed system of equations grows

bigger, increasing simulation time. To obtain results in the case when all four inductances are toleranced at the same

time, concurrent fault simulation method consumed 2614.2 s, whereas the repetitive simulations method needed

3350.7 s. Obviously, the di�erence is signi®cantly decreased, and will get even smaller if the number of toleranced el-

ements is increased.

Fig. 10. Family of amplitude characteristics with toleranced inductance: (a) L1, (b) L4. Yield constraints are depicted.

Fig. 9. Ten-stage crystal band-pass ®lter.
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When the yield estimation was of interest, we were looking for the circuits obeying the requirement for the passband

width to be exactly 1 kHz, between 999.5 and 1000.5 kHz. In the simulated example, when L4 was toleranced, the lower

cuto� frequency condition was satis®ed by 70.6% of the circuits, while the upper cuto� frequency condition was satis®ed

by 71.8% of the circuits. Both the conditions were satis®ed by 51.5% of the circuits which means that even this small

standard deviations of observed elements (0.005%) signi®cantly in¯uences the ®lter performances. The yield becomes

much smaller when the passband insertion loss of the ®lter is limited too. If, for example, in addition to the previous

requirements, the maximum insertion loss is supposed to be 1 dB, the yield value falls down to 23.8%. The yield

constraints discussed here are depicted in Fig. 10(b). Standard deviation as a function of frequency of the output

voltage is given in Fig. 12. In that simulation, all four inductances were toleranced simultaneously.

The full power of the concurrent fault simulation method application is recognized when complex circuits are

statistically simulated. One such circuit is the two-stage active lowpass ®lter [26] shown in Fig. 13. No time domain

tolerance analysis of such circuit may be found in the literature, as to our knowledge. Values of the elements are also

noted in the same ®gure. The method of concurrent fault simulation carried out 1000 simulations of this circuit in

378.5 s, whereas the classical method of repetitive simulations required 1591.52 s. The simulation results in the form of

the amplitude characteristics are given in Fig. 14, when tolerances of the resistor R8 and capacitor C2 are 5%, the values

of which have uniform distribution. The same ®gure contains response requirements (graphically presented), which are

to be satis®ed by the circuit. These requirements are summarized in Table 1.

The ratio of the number of characteristics satisfying these conditions and the complete number of characteristics,

versus frequency is given in Fig. 15. The overall yield of the circuit for the above requirements is 52.4%. One can notice

that the most sensible frequency range is between 1 and 4 kHz.

The step response of the same circuit will be used in order to demonstrate the e�ectiveness of the method. The rise

time of the response is de®ned as the time needed for the output to go from 10% to 90% of the nominal value. The

following requirements were imposed: the output voltage should reach 0.094 V before 30 ls, and 0.846 V before

0.11 ms, meaning that the maximum allowable rise time was 80 ls. In addition, the value of the overshoot should not be

Fig. 12. Frequency dependence of the output voltage standard deviation.

Fig. 11. Part of the amplitude characteristics response, obtained with: (a) 200, (b) 1000 sample points.
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Fig. 13. Two-stage low-pass ®lter.

Fig. 14. Frequency dependence of the ®lter response.

Table 1

Frequency (kHz) Upper bound of the gain (dB) Lower bound of the gain (dB)

1±4 ÿ0.25 ÿ0.85

7 ÿ3 ÿ4

10 ÿ20.4 ±

32 ÿ70 ±

100 ÿ42 ±
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greater than 20%, i.e. the maximum value of the output have to be less than 1.128 V. The circuit depicted in Fig. 13 was

simulated with standard deviations for the resistor R1 of 10%, and capacitance C2 of 20%. Simulation was performed

for one toleranced element at a time. One thousand analyses were performed by CONSTELLATION, taking 317.63 s

for the concurrent fault simulation method, and 1082.97 s when the classical method of repetitive simulations was

applied. Families of the responses when capacitance C2 is toleranced are shown in Fig. 16, along with the described

requirements. The time dependence of the yield for the responses from Fig. 16 is given in Fig. 17. The overall yield, i.e.

the ratio of the number of satisfactory responses, no matter the time versus the total number of responses, occurs to be

73.8%.

Having all these examples in mind, one may consider the applicability and computational e�ciency of the method

introduced here. First, there is no doubt that the extreme simplicity in the circuit equation formulation phase may be

attributed to this method. Neither the di�erence form of TellegenÕs theorem nor the Householder transformations are

needed. The second and equally important issue is related to the computational complexity in the circuit analysis part.

To get a picture related to this aspect, the e�orts for matrix factorization for the new method and the classical (analysis

repetition) method will be compared. To do this, we will assume that the number of long operations (multiplications

and divisions) needed for matrix factorization is proportional to nk , say ank , where a and k are constant. The value of k

is dependent on how the factorization is programmed, on whether the matrix is sparse and, in that context, how large n

is. Namely, for a small n, no advantages over the sparsity can be taken.

If sparsity is not exploited, k � 3 is obtained. For very large and very sparse systems, one claims that k � 1:2 may be

achieved [1]. In the kind of circuits we are analyzing here, one may expect 2 < k < 2:5. If so, the classical method will

need 2(ank) long operations for factorization, whereas our method needs a(n+m)k . According to this, our method will be

preferable if 2nk > �n� m�k . From the matrix factorization point of view these two methods will be equally complex if

m � �21=k ÿ 1�n. For k � 2 and n � 20, this results in m � 8:2. This is almost valid for comparison of the overall

Fig. 16. Step response of the ®lter. Yield constraints are denoted.

Fig. 15. Ratio of the number of satisfactory circuits and the entire number of the circuits.
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complexity as shown in Fig. 18. Here, (a) represents repetitive (one for original and second for the perturbed circuit)

whereas (b) represents concurrent simulation elapsed time as a function of the number of toleranced elements, for the

example of Fig. 9. One may observe the linear dependence of the elapsed time on the number of toleranced elements for

the new method which is favorably compared with the m3 curve obtained by application of the Householder formula

[13]. The linearity of this curve may be estimated by the following: The di�erence of the number of long operations

during factorization may be approximated by a��21=kn�k ÿ �m� n�k � � a�21=knÿ nÿ m��21=kn� n� m� for k � 2. If

�21=k � 1�n� m, then this di�erence may be approximated by a��21=2 ÿ 1�nÿ m��21=2 � 1�n which is linear with respect

to m.

5. Conclusions

A new method for statistical simulation of linear electronic circuits was presented, based on the concurrent fault

simulation method. The new method is more e�ective than the known ones, for it maintains the circuit structure and,

consequently, reduces the number of complete circuit matrix factorization down to one per frequency/time point for all

faults. In this way, simulation speed is increased.

As a means for evaluating the usefulness of the concurrent fault simulation method in statistical simulation, a

simulator called CONSTELLATION was developed. It uses a fast techniques for circuit analysis, implementing the

concurrent fault simulation method.

A number of examples were executed, two of which were discussed in this article. Signi®cant advantages of the

statistical simulation based on the concurrent fault simulation method compared to the classical method of repetitive

Fig. 18. Elapsed time versus number of toleranced elements: (a) repetitive and (b) concurrent simulation in the frequency domain of

the circuit of Fig. 9.

Fig. 17. Time domain yield.
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simulations were discovered. This stands equally for the time domain statistical analysis too. This should be especially

recognized when time domain optimization methods are to be considered.
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